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Effective Optimization Algorithms for Fragment-assembly
based Protein Structure Prediction*

Kevin W. DeRonne and George Karypis

Department of Computer Science & Engineering,
Digital Technology Center, Army HPC Research Center
University of Minnesota, Minneapolis, MN 55455

{deronne, karypis}@cs.umn.edu

Abstract lows. In homologous fold recognition the structure of
Despite recent developments in protein structure pregtictan ~ the query sequence is similar to a known structure for
accurate new fold prediction algorithm remains elusive.eOn some other sequence. However, these two sequences
of the challenges facing current techniques is the size anttc  have only a low (though detectable) similarity. In analo-
plexity of the space containing possible structures for ergu  gous fold recognition there exists a known structure sim-

sequence. Traditionally, to explore this space fragment as;r tg the correct structure of the query, but the sequence

§embl_y gppr_oaches to new fold prednchon_have useq §to_chaséf that structure has no detectable similarity to the query
tic optimization technlques. Here we examine determmdti

, L . S . sequence. Still more challenging is the problem of pre-
gorithms for optimizing scoring functions in protein stiue . .
prediction. dicting the stru_cture of aquery sequence lacking a knc_)wn

Two previously unused techniques are applied to the propStructural relative, which is called new fold (NF) predic-
lem, called the Greedy algorithm and the Hill-climbing algo tion.
rithm. The main difference between the two is that the latter Within the context of the NF problem knowledge-
plements a technique to overcome local minima. Experimentdased methods have attracted increasing attention over
on a diverse set of 276 proteins show that the Hill-climbing the last decade. In CASP, prediction approaches that as-
algorithms consistently outperform existing approachasel  semble fragments of known structures into a candidate
on Simulated Annealing optimization (a traditional stosha girycture [18, 7, 10] have consistently outperformed al-
tic technique) in optimizing the rqot mean squared deviatio iarnative methods, such as those based largely on ex-
(RMSD) between native and working structures. plicit modeling of physical forces. Fragment assembly
1 Introducti for a query protein begins with the selection of struc-

ntroduction tural fragments based on sequence information. These
Reliably predicting protein structure from amino acid se-fragments are then successively inserted into the query
guence remains a challenge in bioinformatics. Althoughprotein’s structure, replacing the coordinates of the guer
the number of known structures continues to grow, manywith those of the fragment. The quality of this new struc-
new sequences still lack a known homolog in the PDBture is assessed by a scoring function. If the scoring func-
[2], which makes it harder to predict structures for thesetion is a reliable measure of how close the working struc-
sequences. The conditional existence of a known structure is to the native fold of the protein, then optimizing
tural homolog to a query sequence commonly delineatethe function through fragment insertions will produce a
a set of subproblems within the greater arena of proteirgood structure prediction. Thus, building a structure in
structure prediction. For example, the biennial CASPthis manner can break down into three main components:
competitiort breaks down structure prediction as fol- a fragment selection technique, an optimizer for the scor-
ing function, and the scoring function itself.

*This work was supported in part by NSF EIA-0986042, ACI-0488, 1IS- To optimize the scoring function, all the leading

0431135, and NIH RLM008713A, the Digital Technology Cergethe Univer- assemb|y-based approaches use an a|gorithm invo|ving
sity of Minnesota; and by the Army High Performance CompyResearch Cen- . . .
ter (AHPCRC) under the auspices of the Department of the Admyy Research a stochastic search (e-g- Simulated Annea“ng [18]1 ge-

Laboratory (ARL)lunder Cooperative Agreement numberlDAﬂm—2—0014. netic algorithms [7]’ or conformational space annea“ng
The content of which does not necessarily reflect the positiche policy of the . . .
government, and no official endorsement should be inferdetess to research [10])- One pOten“al drawback of such techmques is that

and computing facilities was provided by the Digital Teclugy Center and the they can require extensive parameter tuning before pro-

Minnesota Supercomputing Institute. duci d uti
Ihttp://predictioncenter.org/ ucing good solutions.




In this paper we wish to examine the relative perfor- Table 1: Number of sequences at various

mance of deterministic and stochastic techniques to op- length intervals and SCOP class.
timize a scoring function. The new algorithms presented Sequence Cengh

below are inspired by techniques originally developed in SCOP Class <100  100-200 >200 total
the context of graph partitioning [4], and do not depend alpha o e o
on a random element. The Greedy approach examines all alpharbeta 4 26 39 69
possible fragment insertions at a given point and chooses alphatbeta 15 36 v 6

the best one available. The Hill-climbing algorithm fol-

lows a similar strategy but allows for moves that reduce The above steps resulted in a set of 2817 proteins.
the score locally, provided that they lead to a better globafrom this set, we selected a subset of 276 proteins
Score. (roughly 10%) to be used in evaluating the performance
Several variables can affect the performance of optivf the various optimization algorithms (i.e., a test set),
mization algorithms in the context of fragment-based \yhereas the remaining 2541 sequences were used as the
initio structure prediction. For example, how many frag- gatabase from whence to derive the structural fragments
ments per position are available to the optimizer, how(j e a training set§. The test sequences, whose charac-
long the fragments are, if they should be multiple sizesteristics are summarized in Table 1, were selected to be

at different stages [18] or all different sizes used togethe gjyerse in length and secondary structure composition.
[7], and other parameters specific to the optimizer can all
influence the quality of the resulting structures. 2.2 Neighbor Lists

Taking the above into account, we varied fragment .
length and number of fragments per position when com-AS the search space for fragment assembly is much oo

paring the performance of our optimization algorithmstovaSt’ fragment-baseeb initio siructure preQ|ct|on ap-
that of a tuned Simulated Annealing approach. Our exproaches mus'g reduce the number.of po§3|b|§ stryctures
periments test these algorithms on a diverse set of 27 at th_—}y consider. They accomplish this primarily by
protein domains derived from SCOP 1.69 [14]. The re.restricting the number of structural fragments that can
sults of these experiments show that the HiII-cIimbing-be used to replace ea¢hmer of the query sequence.

based approaches are very effective in producing highI_n eva_luati_ng the various optimization algorithms (_1evel-
quality structures in a moderate amount of time, and tha ped in this work, we followed a methodology for iden-

. . tifying these structural fragments that is similar in dpiri
th lly outperf Simulated A ling. On th
ey generaty ourperiorm simuiated Anneaing. n eto that used by the Rosetta [18] system.

average, Hill-climbing is able to produce structures that Consid n&eof lenathl. E h
are 6% to 20% better (as measured by the root mean, onsider a query sequenaeotiengtht. For €ach po-

square deviation (RMSD) between the computed an ition z, we_ldetnhnfy alist ;) of n structgra: ILagments
its actual structure), and the relative advantage of Hill- y comparing the query sequence against Ih€ sequences

climbing-based approaches improves with the length on the proteins m_the training set. Forfragments_of length
the proteins, k, these comparisons involve tikemer of X starting at

position: (0 < ¢ < I—k+1) and allk-mers in the training

2  Materials and Methods set. Then structural fragments are selected so that their
corresponding sequences have the highest profile-based
2.1 Data score with the query sequencé’smer. Throughout the

The performance of the optimization algorithms studied"®St 9f this paper, we will refer to the ligt as theneigh-
in this paper were evaluated using a set of proteins witHpor listof position:. . . .
known structure that was derived from SCOP 1.69 [14] M our study we used neighbor lists containing frag-

as follows. Starting from the set of domains in SCOp,ments of a single length as well as neighbor lists con-

we first removed all membrane and cell surface protein.;,t,aining fragments of different lengths. In the latter case

and then used Astral's tools [3] to construct a set of pro W€ consider two different approaches to leveraging the
teins with less than 25% sequence identity. This set wa¥2/1€d length fragments. The first, referred tosaan
further reduced by keeping only the structures that werd!Ses the fragmentlengths in decreasing order. For exam-
determined byX-ray crystallography, filtering out any ple, if the nelghbor I|sts_conta|n strucftural fragments_ of
proteins with a resolution greater than&,@nd remov-  ength three, six, and nine, the algorithm starts by first
ing any proteins with &, — C,, distance greater than optlmlzmg the structure using o.nly fragments of length
3.8 times their sequential separation nine, then fragments of length six, and finally fragments

3This dataset is available at http://www.cs.umn.edu/

2No bond lengths were modified to fit this constraint; proteios - o
deronne/supplement/optimize

satisfying it were simply removed from consideration.



of length three. Each one of these optimization phasegecently used in developing effective remote homology
terminates when the algorithm has finished (i.e., reachegrediction and fold recognition algorithms [16]. Specif-
a local optimum or performed a predetermined numbeically, the similarity score between th#h position of

of iterations), and the resulting structure becomes the inprotein X's profile, and thejth position of proteinY”’s

put to the subsequent optimization phase. The seconprofile is given by

approach for combining different length fragments is re- 20

ferred to agool, and it optimizes the structure once, se- Sx v (i,5) = > PSFMx (i,1) PSSMy (5,1) +

lecting fragments from any available length. Using any =1 1)
single length fragment in isolation, or using either scan 20

or pool will be referred to asfaagment selection scheme = PSFMy (5,1) PSSM (5, 1),

2.2.1 Sequence Profiles where PSFM (i,1) and PSSM (i, 1) are the values cor-
é_esponding to théth amino acid at theth position of

's position-specific scoring and frequency matrices.
PSFMy (j,1) and PSSM (j,1) are defined in a similar
fashion.

Equation 1 determines the similarity between two pro-
file positions by weighting the position-specific scores of
the first sequence according to the frequency at which
the corresponding amino acid occurs in the second se-

the 20 distinct amino acids. The second matrix is itsquence’s profile. The key difference between Equation 1

position-specifidrequencymatrix PSEMy that contains and the corresponding scheme used in [13] (therein re-

the frequencies used by PSI-BLAST to derive PSSM ferred to as PICASSOB), is that our measure uses the

These frequencies (also referred taaget frequencies target fre_quenmes, vv_hereas the scheme of [13] is based

[13]) contain both the sequence-weighted observed fre2" effective frequencies.

guencies (also referred to affective frequencied 3])

and the BLOSUM®62 [6] derived-pseudocounts [1]. For

each row of a PSFM, the frequencies are scaled so thanternally, we consider only the positions of tie,

they add up to one. In the cases where PSI-BLAST coulditoms, and we use a vector representation of the protein

not produce meaningful alignments for a given positionin lieu of ¢ andy backbone angles. Our protein construc-

of X, the corresponding rows of the two matrices are detion approach uses the actual coordinates of the atoms in

rived from the scores and frequencies of BLOSUMG62. each fragment, rotated and translated into the reference
For our study, we used the version of the PSI-BLAST frame of the working structure. Fragments are taken di-

algorithm available in NCBI's blast release 2.2.10to gen-rectly from known structures, and are chosen from the

erate profiles for both the test and training sequencedraining dataset using the above profile-profile scoring

These profiles were derived from the multiple sequencenethods.

alignment constructed after five iterations using &an ] )

value of 10~2. The PSI-BLAST search was performed 2-4 Scoring Function

against NCBI's nr database that was downloaded ing the focus of this work is to develop and evaluate new
November of 2004 and which contained 2,171,938 seyptimization techniques, we use the RMSD between the
guences. predicted and native structure of a protein as the scor-
222 Profile-to-Profile Scoring Method ing function. Although such a function cannot serve as a

o ) predictive measure, we believe that using this as a scor-
The similarity score between a pair bfmers (one from  ing function allows for a clearer differentiation between

the query sequence and one from a sequence in the traifyie optimization process and the scoring function. In ef-

ing set) was computed as the ungapped alignment SCOkgct, we assume an ideal scoring function in order to test
of the two k-mers whose aligned positions were scoredipe optimization techniques.

using profile information.
Many different schemes have been developed for de2.5 Optimization Algorithms
termining the similarity between profiles that combine

information from the original sequence, position-specificf A lorithms in th 1
scoring matrix, or position-specific target and/or effec- erent optimization algorithms in the context of iragment

tive frequencies [13, 21, 11]. In our work we use aassembly-based approaches & initio structure pre-
scheme that is derived from PICASSO [5, 13] that Wasdictions. One of these algorithms, Simulated Annealing

The comparisons between the query and the training s
guences take advantage of evolutionary information b
utilizing PSI-BLAST [1] generated sequence profiles.
The profile of a sequencE of lengthi is represented
by two ! x 20 matrices. The first is its position-specific
scoring matrix PSSM that is computed directly by PSI-
BLAST. The rows of this matrix correspond to the var-
ious positions inX, while the columns correspond to

2.3 Protein Structure Representation

In this study we compare the performance of three dif-



[8], is currently a widely used method to solve such prob-nealing schedule that linearly decreases the temperature

lems, whereas the other two algorithms, Greedy and Hill-of the system to zero over a fixed number of cycles.

climbing, are newly developed for this work. Simulated Annealing is a highly tunable optimization
The key operation in all three of these algorithms isframework. The starting temperature and the annealing

the replacement of A-mer starting at a particular posi- schedule can be varied to improve performance, and the

tion 4, with that of a neighbor structure. We will refer to performance of the algorithm depends greatly on these

this operation as move A move is considered valid if, parameters. Section 3.2.1 describes how we arrive at the

after inserting the fragment, it does not create any steriwalues for these parameters of SA as implemented in this

conflicts. A structure is considered to have a steric constudy.

flict if it contains a pair ofC,, atoms within 2.8 of one

another. Also, for each valid move, itmin is defined 2.5.2 The Greedy Algorithm (G)

as the improvement in the value of the scoring functionOne of the characteristics of the Simulated Annealing al-

between the working structure and the native structure ofjorithm is that it considers moves for insertion at ran-

the protein. dom, irrespective of their gains. The Greedy algorithm
. . that we present here selects maximum gain moves.
25.1 Simulated Annealing (SA) Specifically, the algorithm consists of two phases. In

Simulated Annealing [8] is a generalization of the Montethe first phase, calleiditial structure generationthe al-
Carlo [12] method for discrete optimization problems. gorithm starts from a structure corresponding to a fully
This optimization approach is designed to mimic the pro-extended chain, and attempts to make a valid move at
cess by which a material such as metal or glass cools. A¢ach position of the protein. This is achieved by scor-
high temperatures, the atoms of a metal can adopt coring all neighbors in each neighbor list and inserting the
figurations not available to them at lower temperatures—best neighbor (i.e. the neighbor with the highest gain)
e.g., a metal can be a liquid rather than a solid. As thdrom each list. If some positions have no valid moves
system cools, the atoms arrange themselves into moren the first pass, the algorithm attempts to make moves
stable states, forming a stronger substance. at these positions after trying all positions once. This
The Simulated Annealing (SA) algorithm proceeds inensures that the algorithm makes moves at nearly every
a series of discrete steps. In each step it randomly selecposition down a chain, and also provides a good starting
a valid move and performs it (i.e., inserts the selectecpoint for the next phase.
fragment into the structure). This move can either im- Inthe second phase, callptbgressive refinemerthe
prove or degrade the quality of the structure. If the movealgorithm repeatedly finds the maximum gain valid move
improves the quality, then the move is accepted. If it de-over all positions of the chain, and if this move leads to
grades the quality, then the move will still be accepteda positive gain—i.e. it improves the value of the scoring

with probability function—the algorithm makes the move. This progres-
o sive refinement phase terminates upon failing to find any
p= e(w), (2) move to make. The Greedy algorithm is guaranteed to

finish the progressive refinement phase in at least a local
whereT is the current temperature of the systemq optimum.
is the score of the last state, ang.,, is the score of
the state in question. From Equation 2 we see that th&.5-3 Hill-Climbing (HC)
likelihood of accepting a bad move is inversely related toThe Hill-climbing algorithm was developed to allow the
the temperature and how much worse the new structur&reedy algorithm to effectively climb out of locally op-
is from the current structure. That is, the optimizer will timal solutions. The key idea behind Hill-climbing is to
accept a very bad move with a higher probability if the not stop after achieving a local optimum but to continue

temperature is high than if the temperature is low. performing valid moves in the hope of finding a better
The algorithm begins with a high system tempera-local or a (hopefully) global optimum.
ture which it progressively decreases according taran Specifically, the Hill-climbing algorithm works as fol-

nealing schedule As the optimization must use finite lows. The algorithm begins by applying the Greedy al-
steps, the cooling of the system cannot be continuougorithm in order to reach a local optimum. At this point,
but the annealing schedule can be modified to increas# begins a sequence of iterations consisting difil&

its smoothness. The annealing schedule depends ondiimbing phase, followed by a progressive refinement
combination of the number of total allowed moves andphase (as in the Greedy approach). In the hill-climbing
the number of steps in which to make those moves. Ouphase, the algorithm performs a series of moves, each
implementation of Simulated Annealing, following the time selecting the highest gain valid move irrespective
general framework employed in Rosetta [18], uses an anef whether or not it leads to a positive gain. If at any



point during this series of moves, the working structurethis proximity constraint holds, we impose a three-
achieves a score that is better than that of the structurdimensional grid over the structure being built with
at the beginning of the hill-climbing phase, this phaseboxes 2.8 on each side. As each move is made, its
terminates and the algorithm enters the progressive reatoms are added to the grid, and for each addition the
finement phase. The above sequence of iterations termsurrounding 26 boxes are checked for atoms violating the
nates when the hill-climbing phase is unable to produceroximity constraint. In this fashion we limit the number
a better structure after successively performing all besof actual distances that must be computed.
scoring valid moves. We further decrease the required time by sequentially

Since the hill-climbing phase starts at a local opti- checking neighbors at each position down the amino acid
mum, its initial set of moves will lead to a structure chain. All atoms upstream of the insertion point must be
whose quality (as measured by the scoring function) ignternally valid, as they have previously passed proxim-
worse than that at the beginning of the hill-climbing ity checks. Thus, we need only examine those atoms at
phase. However, subsequent moves can potentially leagk downstream from the insertion. This saves on compu-
to improvements that outweigh the initial quality degra- tation time within one iteration of checking all possible
dation; thus allowing the algorithm to climb out of lo- moves.
cally optimal solutions.

3 Experimental Evaluation

3.1 Performance of the Greedy and Hill-
climbing Algorithms

Move Locking As Hill-climbing allows negative
gain moves, the algorithm can potentially oscillate be-
tween a local optimum and a non-optimal solution. To
prevent this from happening, we implement a notion of To compare the effectiveness of the Greedy and Hill-
move locking. After each move,lackis placed on the climbing optimization techniques, we report results from
move to prevent the algorithm from making this move a series of experiments in which we vary a number of pa-
again within the same phase. By doing so, we ensurgameters. Table 2 shows results for the Greedy and Hill-
the algorithm does not repeatedly perform the same seslimbing optimization techniques usiigmer sizes of 9,
quence of moves; thus guaranteeing its termination afte®, and 3 individually, as well as using the scan and pool
a finite number of moves. All locks are cleared at the endechnigues to combine them. Average times are also re-
of a hill-climbing phase, allowing the search maximum ported for each of these five fragment selection schemes.
freedom to proceed. Examining Table 2, we see that the Hill-climbing al-
We investigate two different locking methods. The gorithm consistently outperforms the Greedy algorithm.
first, referred to agine-grain locking locks the single As Hill-climbing includes running Greedy to conver-
move made. The algorithm can subsequently select a difgence, the result is not surprising, and neither is the
ferent neighbor for insertion at this position. The secondjncreased run-time that Hill-climbing requires. Both
referred to agoarse-grain lockinglocks the position of schemes seem to take advantage of the increased flexi-
the query sequence itself; preventing any further inserbility of smaller fragments and greater numbers of frag-
tions at that position. In the case of pooling, coarse lock-ments per position. For example, on the average the 3-
ing locks moves of all sizes. mer results are 20.6%, 27.4%, and 31.3% better than the
Since fine-grain locking is less restrictive, we expectcorresponding 9-mer results for Greedy, Hill-climbing
it to lead to better quality solutions. However, the ad-(coarse) (hereafter HE and Hill-climbing (fine) (here-
vantage of coarse-grain locking is that each successivafter HC;), respectively. Similarly, increasing the neigh-
fragment insertion significantly reduces the set of frag-bor lists from 25 to 100 yields a 15.1%, 19.4%, and
ments that need to be considered for future insertions?28.2% improvement for Greedy, HCand HG, respec-

thus, leading to a faster optimization algorithm. tively. These results also show that the search algorithms
embedded in Greedy, HCand HG are progressively
2.5.4 Efficient Checking of Steric Conflicts more powerful as the size of the overall search space in-

One characteristic of the Greedy and Hill-climbing al- creases.

gorithms is their need to evaluate the validity of every ~ With respect to locking, a less restrictive fine-grained

available move after every insertion. This proves nec-approach generally yields better results than a coarse-
essary because each insertion can potentially introducgrained scheme. For example, averaging over all experi-
new proximity conflicts. In an attempt to assuage thements, fine-grained locking yields a 13.7% improvement
time requirement for this process, we have developed aaver coarse-grained locking. However, this increased
efficient formulation for validity checking. performance comes at the cost of an increase in run-time

Recall that a valid move brings no tw@, atoms of 700% on the average.
within 2.5A of each other. To quickly determine if Comparing the performance of the scan and pooling



Table 2: Average values over 276 proteins optimized usitlgdtinbing and dif-

ferent locking schemes. Times are in seconds and scores Aré_ower is better
in both cases.

n =25 n = 50 n =75 n = 100
Score Time Score Time Score Time Score Time

k=9 12.17 14 11.14 16 10.74 18 10.44 20
k=6 1084 15 1028 19 966 24 944 27
Greedy k=3 951 25 899 34 858 45 8.25 58
Scan 9.29 38 8.29 42 7.89 46 7.52 51
Pool 9.06 54 8.36 69 7.81 215 7.61 106
Hill- k=9 10.18 22 9.32 30 8.73 55 8.38 72
climbin k=6 8.92 30 8.03 56 7.51 98 7.24 116
(Coarse% k=3 731 59 6.86 129 6.29 231 6.11 313
HCY Scan 689 93 6.17 159 553 243 523 336
¢ Pool 6.89 175 6.32 379 5.79 543 5.54 959
k=9 959 51 845 162 788 381 745 649
Hill- k=6 8.15 117 7.13 426 6.55 996 6.16 1731
climbing k=3 6.84 261 594 1093 540 2175 4.83 3169
(fine) (HCy) Scan 6.43 330 541 1162 4.82 2028 4.33 2801
Pool 6.00 903 503 3586  4.46 5246 411 7151
Table 3: SCOP classes and perature Imgarly over 3500 cycles. This allows for a
lengths for the tuning set. smooth cooling of the system. Over the course of these
SCOP Wentiier Tength— SCOP dlass cygles, the algprlthm attempﬁsx (I x 7_1) moves,_where
dTjiwi_ 105  beta « is an empirically determined scaling factdrjs the
dikat 111 dpharbeta number of amino acids in the query protein, ands
dibea 116  alpha the number of neighbors per position. Note that for the
319312 121 beta scan and pool techniques (see Section 2.2), we allow SA
jiga 146 alpha X
dinbca 155  beta three times the number of attempted moves because the
dlyaca 204 alpha/beta H R
14842 205 bt total number of neighbors is that much larger. In order
dlaoza2 209  beta to produce comparable run-times to the G, H@d HG:
schemesg values of 20, 60, and 250 are employed, re-
spectively.

methods to combine variable lengthmers we see that In addition to the above experimental framework, we

only in the HG algorithm does pool perf(c))rm CONSIS- 150 investigated the extent to which the performance of
tently beter than scan (an average of 6.6%). The OtheﬁA improves if the total number of allowed moves were
schemes either have mixed results, or in the case Qf HC

plit across a number of independent runs (in this case the
pool perform; somevvhat worse. Results from the poo inal structure will be the one that achieved the best score
and scan settings |nQ|cate that Greedy and k(@ not over the different runs). Our results showed that this ap-
as effective at exploring the search space ag HC proach resulted in comparable or somewhat worse results

3.2 Comparison with Simulated Annealing and we did not pursue it any further. Finally,_ following
recent work [17] we allowed for a temporary increase in
3.2.1 Tuning the Performance of SA the temperature after 150 consecutive rejected moves.

Due to the sensitivity of Simulated Annealing to specific
values for various parameters, we performed a search oa2-2 Results
a subset of the test proteins in an attempt to maximized he Simulated Annealing results are summarized in Ta-
the ability of SA to optimize the test structures. Specifi- ble 4. As we see in this table, Simulated Annealing con-
cally, we attempted to find values for two governing fac- sistently outperforms the Greedy scheme. For example,
tors: the initial temperatur®, and the number of moves the average performance of SA with= 20 is 16.0%
nm. To this end, we selected ten medium length pro-better than that obtained by G. These performance com-
teins of diverse secondary structural classification (se@arisons are obtained by averaging the ratios between the
Table 3), and optimized them over various initial tem- two schemes of the corresponding RMSDs over all frag-
peratures. The initial temperature that yielded the besment selection schemes and values.of The superior
average optimized RMSD wdg, = 0.1 and we used performance of Simulated Annealing over Greedy is to
this value in all subsequent experiments. be expected, as Greedy lacks any sort of hill-climbing
In addition to an initial temperature, when using Sim- ability, whereas the stochastic nature of Simulated An-
ulated Annealing one must select an appropriate anneaitealing allows it a chance of overcoming locally op-
ing schedule. Our annealing schedule decreases the teriimal solutions. In contrast, both the fine and coarse-



Table 4: Average values over 276 proteins optimized usinguiited Annealing.

Times are in seconds and scores are in A. Lower is better mdastes.

n =25 n = 50 n =75 n = 100
Score Time Score Time Score Time Score Time

k=9 11.46 19 10.22 26 9.47 33 9.11 40
k=6 9.57 19 8.47 27 7.99 34 7.74 42
a =20 k=3 7.60 20 6.84 28 6.58 36 6.44 44
Scan 7.59 59 6.76 82 6.31 105 6.32 129
Pool 7.38 59 6.93 83 7.03 105 7.18 129
k=9 10.73 33 9.41 55 8.85 i 8.63 99
k=6 8.72 34 7.95 57 7.71 80 7.57 103
a = 60 k=3 6.85 36 6.57 60 6.64 85 6.66 109
Scan 6.91 105 6.56 177 6.42 252 6.47 316
Pool 7.26 105 7.20 176 7.23 246 7.28 317
k=9 9.80 103 8.88 196 8.70 289 8.62 381
k=6 8.15 107 7.85 204 7.75 301 7.77 397
a = 250 k=3 6.87 114 6.89 219 6.94 325 6.92 433
Scan 6.87 327 6.65 621 6.63 933 6.61 1217
Pool 7.39 329 7.30 626 7.40 924 7.36 1218

The values ofx in the above table scale the number of moves Simulated Aimgeialallowed to make. In our case,
the total number of moves is x (I x n) wherel is the length of the protein being optimized ands the number
of neighbors per position.

Table 5: Average values over the longest 138 proteins opgidniising Hill-climbing
and different locking schemes. Times are in seconds anéseoe in A. Lower is
better in both cases.

n =25 n = 50 n =75 n = 100
Score Time Score Time Score  Time Score  Time

k=9 14.67 19 13.46 24 13.12 27 12.80 32

k=6 13.48 23 13.11 30 12.22 38 11.98 45

Greedy k=3 11.99 42 11.74 58 11.32 79 11.00 103
Scan 11.86 72 10.66 79 10.23 97 10.07 109

Pool 11.62 86 10.97 114 10.23 144 10.22 183

Hill- k=9 12.22 37 11.17 50 10.50 100 10.07 133
climbing k=6 11.09 51 9.97 101 9.25 183 9.06 218
(coarse) k=3 9.10 106 8.92 242 8.23 439 8.13 598
(HC.) Scan 8.77 149 7.53 296 7.29 481 6.90 627
° Pool 8.69 322 8.21 719 743 1010 7.25 1859
k=9 11.57 91 10.15 302 9.46 720 8.94 1229

Hill- k=6 10.01 218 8.81 809 8.03 1904 752 3315
climbing k=3 8.60 490 7.70 2085 7.14 5167 6.54 8892
(fine) (HCy) Scan 8.13 597 6.79 2024 6.19 4431 545 5976
Pool 744 1720 6.17 6936 5.43 10046 5.01 16807

locking versions of Hill-climbing outperform SA. More ber of moves made will vary greatly. Thus, in order to
concretely, on the average H@erforms 6.2% better keep the cooling of the system linear we vary the num-
than SA witha = 60, and HG performs 19.2% better ber of moves allowed before the system reduces its tem-

than SA witha = 250. perature. As a result, different values @fcan lead to
Analyzing the performance of Simulated Annealing different randomly chosen optimization paths.
with respect to the value af, we see that while Simu- Comparing the performance of the various optimiza-

lated Annealing shows an average improvement of 3.0%ion schemes with respect to the various fragment se-
whenq is increased from 20 to 60, the performance detedection schemes, we see two interesting trends. First,
riorates by an average of 0.2% wheiris increased from Greedy, HC, and HG tend to produce better results
60 to 250. This indicates that further increasing the valudi.e., lower RMSD values) using the scan fragment se-
of a may not lead to performance comparable to that oflection scheme as compared to those obtained for3;
the Greedy and Hill-climbing schemes. whereas the performance of Simulated Annealing does
Also note that in some of the results shown in Table 4,not significantly improve. For example, on the average
the performance occasionally decreases aswtivalue  HC; with scan does 9.0% better than H@ith k = 3
increases. This ostensibly strange result comes from thever the different values of; but the corresponding av-
dependence of the cooling process on the number of akrage improvement of SA is only 1.3%. Second, the
lowed moves, in which the value of plays a role. For performance of SA deteriorates (by 10.0% on the aver-
all entries in Table 4 the annealing schedule will coolage) when the different lengthrmers are used via the
the system over a fixed number of steps, but the numpool method, whereas the performance of H@proves



Table 6: Average values over the longerst 138 proteins dpgidusing Simulated
Annealing. Times are in seconds and scores are in A. Lowetieiin both cases.

n =25 n = 50 n =75 n = 100
Score Time Score Time Score Time Score Time

k=9 13.83 30 12.44 43 11.39 56 11.19 69
k=6 11.73 31 10.55 44 9.93 57 9.66 71
a =20 k=3 9.61 31 8.74 46 8.50 60 8.33 74
Scan 9.67 94 8.73 135 8.10 175 8.23 218
Pool 9.34 94 8.93 136 9.15 176 9.44 218
k=9 12.93 56 11.50 96 10.77 135 10.77 175
k=6 10.60 58 9.98 99 9.76 139 9.66 181
a = 60 k=3 8.65 60 8.56 104 8.68 148 8.69 191
Scan 8.93 176 8.57 306 8.28 440 8.35 552
Pool 9.46 176 9.37 303 9.41 429 9.39 555
k=9 11.94 182 11.00 348 10.89 515 10.86 680
k=6 10.20 189 10.01 362 9.90 536 9.93 709
a = 250 k=3 8.88 200 8.91 388 8.94 578 8.93 771
Scan 8.97 575 8.49 1102 8.49 1662 8.45 2168
Pool 9.51 578 9.40 1110 9.57 1642 9.46 2167

The values ofx in the above table scale the number of moves Simulated Aimgeialallowed to make. In our case,
the total number of moves is x (I x n) wherel is the length of the protein being optimized ands the number
of neighbors per position.

(by 6.6% on average). We are currently investigating thebetter solutions than Simulated Annealing in compara-
sources of these behaviors, but one possible explanatidile time. The performance of SA seems to saturate be-
of the latter observation is that Simulated Annealing hasyond o = 60, but HC; will make use of an increased

a bias towards smaller fragments. This bias might retime allowance, finding the best solutions of all the ex-
sult because an insertion of a bad 3-mer will degrade thamined algorithms. Furthermore, experiments with vari-
structure less than that of a bad 9-mer, and as a result, thaions on the number of moves available to the optimizer
likelihood of accepting the former move will be higher demonstrate that the Hill-climbing approach makes bet-
(Equation 2). This may reduce the optimizers ability to ter use of an expanded search space than Simulated An-

effectively utilize the variable length-mers. nealing. Additionally, Simulated Annealing requires the
hand-tuning of several parameters, including the total
Performance on Longest Sequences In order number of moves, the initial temperature, and the an-

to gain a better understanding of how the optimizationnealing schedule. One of the main advantages of using
schemes perform, we focus on the longer half of the tesschemes like Greedy and Hill-climbing is that they do
proteins. Average RMSDs and times for the Greedy andhot rely on such parameters.
Hill-climbing schemes are shown in Table 5, and average Recently, greedy techniques have been applied to
RMSDs and times for Simulated Annealing are shown inproblems similar to the one this paper addresses. The
Table 6. first problem is to determine a set of representative frag-
In general, the trends in these tables agree with thenents for use in decoy structure construction [15, 9]. The
trends in the average values over all the proteins. Howsecond problem is to reconstruct a native protein fold
ever, one key difference is that the relative improvemengiven such a set of representative fragments[19, 20]. The
of the Hill-climbing scheme over Simulated Annealing is greedy approaches used for both these problems traverse
higher, while that of Greedy is lower. For example, com-the query sequence in order, inserting the best found
paring G and SA forv = 20, SA performs 17.0% better, fragment for each position. As an extension, the al-
as opposed to 16.0% for the full average. Comparinggorithms build multiple structures simultaneously in the
with SA for @ = 60, HC. performs 7.0% better as op- search for a better structure. While such approaches have
posed to 6.2% for the full average. Finally, comparingthe ability to avoid local minima, they lack an explicit
with SA for o = 250, HC; is 21.1% better, as opposed notion of hill-climbing.
to 19.2% for the full average. These results suggest that, The techniques this paper describes could be modi-
in the context of a larger search space, a hill-climbingfied to solve either of the above two problems. To build
ability is important, and that the hill-climbing abilitie§  a representative set of fragments, one could track the fre-

HC. and HC; are better than those of SA. quency of fragment use within multiple Hill-climbing
. . ] optimizations of different proteins. This would yield a
4 Discussion and Conclusions large set of fragments, which could serve as input to

This paper presents two new techniques for optimizinga clllijs:ﬁrlngb algortljthrr(lj. The cen:roui[l_s of Ithesde cltusters
scoring functions for protein structure prediction. One ofcou enbe usedin decoy construction. In orderto con-

these approaches, Hsing the scan technique, reachesstruct a native fold from these fragments one need only



restrict the move options of Hill-climbing to the repre- [15] B. H. Park and M. Levitt. The complexity and accuracy
sentative set. We are currently working on adapting our
algorithms to solve these problems.

(16]
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